Yohan Le Gars

Profile

French student with an international mindset who is strongly motivated in becoming a competent engineer in robotics and machine perception.	Feb 2023 - Aug 2023	Stereolabs R&D intern, Paris (FR) Isaac Sim, Spatial Mapping, Terrain Mapping, ROS 2
	Feb 2021 - Aug 2021	Surgical Robotics Lab Research Assistant, Enschede (NL) worked on the published paper: Locomotion of bovine spermatozoa during the transition from
		individual cells to bundles
Skills & Interests	Aug 2020 -	Forvia/Faurecia
 Python (PyTorch, Tensorflow, NumPy) 	Nov 2020	PLC Programmer intern, Gorzów Wielkopolski (PL) LAD programming (TIA Portal) + HMI with
✓ C++		Siemens and Universal robots for a manufacturing station inside the plant.
✓ ROS, ROS 2		
 Deep Learning and Machine Learning 	Education	

2021 - Present **MSc Robotics** TU Delft, Delft (NL) The MSc Robotics is situated at the intersection of mechanical engineering and artificial intelligence. Minor : Computer Vision & Deep Learning 2016 - 2021 **BSc Advanced Technology** University of Twente, Enschede (NL) General Engineering Mechanics, Thermodynamics, Fluid Mechanics, Dynamics, Electronics, Fields & Waves, Control theory. For each discipline a challenging project work is required. 2014 - 2016 High school - French Baccalauréat

Lycée Français Victor Hugo, Frankfurt (DE)

Additional activities

- **Sport & Fitness enthusiast** 4
- 4 **DIY embedded systems projects**

Skills &

- Pytho Tens
- C++
- ROS,
- Deep Machine Learning
- Computer Vision
- Motion Planning
- Simultaneous Localization and Mapping
- Matlab
- Linux
- French, English

Contact

- **a** +31 625280777
- yohan.legars@gmail.com
- in Yohan Le Gars
- 𝗞 yohanlegars.github.io

Experience

Dr		oto	
	JIE	ects	

2022	A MONITORING MOBILE MANIPULATOR TU Delft
	• Developped a software solution on ROS to achieve autonomous monitoring using a mobile manipulator
	 Developped a state machine that is linked to all ROS nodes Developped a GUI with Qt5 to allow the operator to give new 2D locations for the mobile robot to reach and 3D points that the camera (hold by the manipulator) must record
	 Human detections using Lidar and camera sensors. Motion planning and motion control for the manipulator using Movelt package
2022	HAND SIGNS DETECTION WITH LOTTERY TICKET HYPOTHESIS TU Delft
	 Annotation of hand sign pictures using Roboflow Train the YOLOv5 model on google cloud platform Apply quantization and weights pruning to reduce model size and increase running speed Deploy the light weight model on a 2Gb RAM raspberry pi controlled mobile robot
2022	3D HEAD RECONSTRUCTION
2022	<i>TU Delft</i> • Reproducibility project from scratch of a deep learning paper: H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction.
2022	PEDESTRIAN RECOGNITION & LOCALIZATION TU Delft
	 Developed a machine learning algorithm to detect and localize pedestrians in 3D using monocular camera sensor and ground plane assumptions. Improved the algorithm using LiDAR point clouds, clustered using DBSCAN, for regions proposals.
2022	PATH PLANNING & TRAJECTORY SMOOTHING
	 Developed Informed RRT and RRT* from scratch for a mobile robot. Applied cubic spline interpolation to obtain a smooth trajectory between the waypoints
2021	OBSTACLE AVOIDANCE & PEDESTRIAN DETECTION FOR A SELF-DRIVING CAR TU Delft
	 Developed a collection of ROS nodes, each tackling a different task, to achieve autonomous driving in a simulated test track.
	 Designed two nodes to detect obstacles and pedestrians from the camera images and lidar point clouds using OpenCV and PCL. Developed a node that used these detections to generate control instructions.
2021	ARTIFICIAL NEURAL NETWORK FOR A RACING GAME
	 <i>TU Delft</i> Developped and trained a Neural Network for multi-class classification that used the top-view of a 2D racing game as input and outputted the control action (accelerate, steer, left/right, brake)
2021	 BACHELOR THESIS: INFLUENCE OF BOVINE SPERMATOZOA BUNDLING ON FLAGELLAR WAVE PROPAGATION Surgical Robotics Laboratory, Twente Mathematical analysis of flagellar wave propagation of bovine sperm cells from two

videoscopies for soft robotics application.

2021	 CONTROL SEGWAY University of Twente Modelled the dynamics of a segway as an inverted pendulum using 20-sim and bond graphs theories. Developed a LQR state feedback controller.
2020	 ANTENNA AND FM TRANSMITTER University of Twente Developed a FM transmitter Colpritts harmonic oscillator circuit. Developed a helical antenna with 43 MHz resonant frequency. In the initial stages, an analytical and numerical description is performed using COMSOL.
2019	 A ROBOTIC ARM THAT CUTS CAKES University of Twente Developed a robotic arm powered by 2 DC motors. EMG signals from the upper limb's muscles are used as the control interface between the user and the robot. The robot is designed for people suffering from Duchenne muscular dystrophy